NATIONAL COMMUNICABLE DISEASE CENTER
 Markidity

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE / public health SERVICe health services and mental health administration DATE OFRELEASEFMARCH 13 In 1970 ATI ANTA, GEORGIA 30333

EPIDEMIOLOGIC NOTES AND REPORTS MENINGOCOCCAL INFECTIONS
 CONTENTS
 Epidemiologic Notes and Reports

 Fort Leonard Wood, MissouriIn the period Jan. 1 - March 9, 1970, a total MAB3 Arny 1970 recruits and one military dependent at Fort Leonard Wood, Missouri, became ill with meningococcal infections Cthree of these patients died. Neisseria meningitidisy was isplated from 80 percent of the patients with clinical evidence of meningococcal infections. All of the isolates from blood or cerebrospinal fluid were serogroup C sulfonamide-resistant strains.

The 33 cases in recruits exceeded the total number of cases annually reported from this base during previous years; 1967, 17 cases; 1968, 25 cases; 1969, 26 cases. Only one death from meningococcal infection was reported from 1967 through 1969. Eighteen of the 33 cases in recruits in 1970 occurred in February, more than double the number of cases for any of the preceding 5 months (Table 1).

Meningococcal Infections - Fort Leonard Wood, Missouri . . 89 Measles in Previously Immunized Children -
Scott City, Kansas . 90
Salmonellosis - Los Angeles, California. 92
Tularemia - King County, Washington. 94
RFollow-up Tularemia Outbreak - Vermont 94
Tularemia - United States 1960-1968 94
3033委pizootic of Bovine Cysticercosis - California 100
International Notes
Follow-up Influenza - United States and
England and Wales . 92

Several recent culture surveys for nasopharyngeal carriage of N. meningitidis in recruits have been conducted at this base. In February 1970, an increased nasopharyngeal carriage rate of serogroup C organisms, over previous months, was noted in recruits who had received $6-7$ weeks
(Continued on page 90)

TABLEI. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES

DISEASE	9th WEEK ENDED		$\begin{gathered} \text { MEDIAN } \\ 1965 \cdot 1969 \end{gathered}$	CUMULATIVE, FIRST 9 WEEKS		
	$\begin{gathered} \text { March } 7 . \\ 1970 \end{gathered}$	$\begin{gathered} \text { March } 1 . \\ 1969 \end{gathered}$		1970	1969	$\begin{gathered} \text { MEDIAN } \\ 1965-1969 \end{gathered}$
Brucell meningitis	25	32	29	257	268	249
Diphtheria	5	7	4	22	16	30
Encephalitis, primary:	15	2	2	78	22	25
Encephatitis borne \& unspecified	21	11	19	180	177	195
Hepatitis, post-infectious	8	3	17	60	38	92
Hepatitis, serum	112	106		1,086	881	
Malaria .	1,232	993	843	9,814	7.816	7,286
Measles (rubeola)	80	59	51	603	417	325
Meningococcal (rubeola)	1.293	531	2,834	8,967	3,740	18,885
Civilian	68	86	86	605	723	717
Military.	63	83	83	577	677	659
Mumps .	5	3	13	28	46	. 50
Poliomyelitis, ...	2,704	2,369	. .	22,579	19,840	\cdots
Parelytic . .	.		-	1	1	2
Rubirla (German	1922	1,180	-	11	1	2
Tetanus	1,922	1,180		11.121	6,096	\cdots
Tularemia.	2	2	2	12	16	18
Typhoid fever	-	6	2	12	21	21
Raphus, tick-borne (Rky. Mt.	4	3	6	41	36	44
Rabies in animals.	78	94	94	$52 \overline{7}$	1 611	6 648

table il. notifiable diseases of Low frequency

Anthrax:	Cum.		Cum.
Botulism:	-	Psittacosis:	5
Leprosy:	1	Rabies in Man:	-
Leptospiro	14	Rubella congenital syndrome:	13
Plague:	9	Trichinosis: Conn.-1, N.Y. Ups.-1	11
	-	Typhus, murine: Hawaii-1	1

MENINGOCOCCAL INFECTIONS - (Continued from front page)

Table 1
Cases of Neisseria meningitidis Infection in Recruits Fort Leonard Wood, Missouri
Sept. 1, 1969 - March 4, 1970

Year	Month	Total Number of Cases	Deaths
1969	Sept.	0	0
	Oct.	2	0
	Nov.	4	0
	Dec.	5	0
1970	Jan.	7	0
	Feb.	18	3
	March 1-9	8	0

of training (Table 2). This increased carrier rate of serogroup C organisms may have been directly associated with the increased number of cases. Serogroup B N. meningitidis was carried by 6 percent of recruits on arrival and 2 to 11 percent after 6.7 weeks of training. However, in recent months serogroup' B strains have not been associated with clinical disease.

Currently, the investigational group C meningococcal polysaccharide vaccine (1) is being offered a proportion of the Fort Leonard Wood recruits, on a voluntary basis. In February 1970, 800-1,000 recruits were immunized with this vaccine.

In 1970, through March 9, for the state of Missouri, there has been no significant increase in the number of civilians with meningococcal disease compared with the same time period in the previous 2 years. To date, in 1970, five cases have occurred in civilians compared with six in the first 2 months of 1969 and four in 1968. More than 10 cases of meningitis, due to other etiologic agents have also been reported in 1970. In St. Louis, in 1969, seven persons were treated for meningococcal infections out of a total of 26 patients in whom meningitis, of all etiologies, was diagnosed. Since January 1968, isolates of N. meningitidis from Missouri civilians submitted to the NCDC have been predominantly serogroup C sulfonamide-resistant strains.

Two additional patients, from Illinois, were also treated in St. Louis hospitals. One of these became ill on March 4, 2 days after contact with a Fort Leonard Wood serviceman. None of the other six civilians (the five from Missouri and the one from Illinois) with meningococcal disease in 1970 were known to have been directly associated with Fort Leonard Wood.
(Reported by Lt. Col. Gilberto Varela, MC USA, Chief, Preventive Medicine, General Leonard Wood Army Hospital, Fort Leonard Wood, Missouri; Lt. Col. Philip D. Stansifer,

Table 2
Serogroup C, Neisseria meningitidis
Nasopharyngeal Carriage Rates in Military Recruits
Fort Leonard Wood, Missouri
December 1969 - February 1970

Time of Survey	Serogroup C, N. meningitidis Carriage Rate (Percent)		
	Stage of Training		
	On Arrival at Fort	After First 6-7 Weeks of Basic Training	4-8 Weeks After Completion of Basic Training
Dec. 1969	0	31	32
Jan. 1970	2	31	28
Feb. 1970	2	58	24

MC USA, Commander, Fifth US Army Medical Laboratories, St. Louis, Missouri; Lt. Col. Phillip E. Winter, MC USA, Epidemiology Consultant, and Col. Robert H. Quinn, MC USA, Chief, Communicable Disease Branch, Preventive Medicine Division, Office of the Surgeon General, USA, Washington, D.C.; Malcolm S. Artenstein, M.D., Chief, Department of Bacterial Diseases, Walter Reed Army Institule of Research, Washington, D.C.; E. A. Belden, M.D., State Epidemiologist, Division of Health, Missouri Department of Health and Welfare, Jefferson City, Missouri; Helen Bruce, M.D., Acting Director, Communicable Disease Section and Melvin Tess, M.D., Health Commissioner, City of St. Louis Division of Health, St. Louis, Missouri; and the Bacterial Reference Unit, Special Bacteriology Laboratory, and the Bacterial Immunology Unit, Laboratory Division, NCDC.)

Editorial Comment

In recent years serogroup C sulfonamide-resistant N. meningitidis has become the predominant type of menin gococcus isolated from military recruits. A parallel trend has also occurred in the civilian population, and such strains have now become the predominant type isolated from civilian cases throughout the United States (MMWR, Vol. 18, No. 16). The monthly incidence of meningococcal disease in both civilian and military populations shows a similar seasonal variation, with peak incidence rates generally occurring in the late winter and early spring months; out breaks of meningococcal infections are most likely to be reported at that time of the year.
Reference
(1) Artenstein, M. S., Gold, R., Zimmerly, J. G., Wyle, F. A. Schneider, H., and Harkins, C. Prevention of meningococcal disease by group C polysaccharide vaccine. New Eng JMCd. 282:417-420, 1970.

MEASLES IN PREVIOUSLY IMMUNIZED CHILDREN - Scott City, Kansas

Between Jan. 20 and March 5, 1970, 47 cases of measles occurred in residents of Scott City, Kansas, a town with a population of 4,600 people. Fifteen of these cases were in previously immunized children. All of the 47 cases were clinically and epidemiologically compatible with
rubeola. Nearly all patients had a 2 - to 3 -day prodrome ${ }^{\text {ef }}$ fever ($102-104^{\circ} \mathrm{F}$.), associated with cough, coryza, lacrim ${ }^{\text {a }}$ tion, and a generalized rash of 4 - to 10 -days duration. Koplick spots were noted in several patients. The only complication occurred in a 4 -year-old boy who developed

Figure 1
measles cases by date of onset SCOTT CITY, KANSAS - JAN. 19-MARCH 7, 1970

secondary otitis media. The index patient (Figure 1). was an unimmunized 7 -year-old, second grade boy from whom three generations of spread (35 cases) could be documented. His presumed source of infection was contact at the local bowling alley with children from neighboring communities where outbreaks of measles were occurring.

Of the 47 cases, 15 (32 percent) were in children with
documented histories of previous measles immunization.
Both Edmonston B and further attenuated measles vaccines
had been employed. Although measles immune globulin (MIG) had been used in five cases, the dosages had not been recorded in all instances. Three of the 15 children had been immunized between 8 and 9 months of age, and ${ }^{\text {two }}$ of these three had also received MIG. The interval from immunization to onset of illness ranged from 4 months to $71 / 2$ years. There was no apparent difference in the clinical illness of vaccinated and unvaccinated children. A measles immunity survey was conducted after the outbreak, and data were obtained on 65 percent of the population under 18 years of age. (The survey was 80 , percent complete in the 5- to 14-year age group.) Based on population estimates from this survey, attack rates by age and immunization status were calculated (Table 3); the overall
attack rate for measles susceptible children was 10.4 percent, while that for previously immunized children was 2.0 percent. The attack rate in the 5 - to 9 -year age group for immunized and unimmunized children was 2.6 and 26.7 percent, respectively. Furthermore, the immunity survey also demonstrated that the elementary school population, which accounted for 35 of the 47 cases, had an immunity level at the onset of the epidemic of 89 percent.
(Reported by E. D. Lyman, M.D., State Director of Health, and Robert A. French, Associate Epidemiologist, Kansas State Department of Health; H. Preston Palmer, M.D., County Health Officer, Scott County, Kansas; and an E1S Officer.)

Editorial Comment:

The 2 percent attack rate in immunized children during this outbreak is consistent with the 3 to 5 percent failure rate which various studies have indicated may occur with the use of live attenuated measles vaccine. (1, 2)
References:
(1) Katz, Samuel L. et. al.: Studies on Attenuated Measles-Virus Vaccine. New Eng d Med, 263:180, July 28, 1960.
(2) Krugman, Saul et. al.: Studies with Live Attenuated MeaslesVirus Vaccine. Amer d Dis Child, 103:151, March 1962.

Table 3
Measles Attack Rates by Age and Immunization Status
Scott City, Kansas - January 20-March 5, 1970

Age	Total Pop.	Estimated Population			Cases of Measles		Attack Rates	
(Years)		History of Measles before Jan. 1970	Immunized*	Unimmunized*	Immunized	Unimmunized	Immunized	Unimmunized
$<1 * *$ $1-4$	-	-	-	-	0	0	-	-
$1-4$ $5-9$	312	0	193	119	$2^{* * *}$	8	1.0	6.7
	492	69	378	45	10***	12	2.6	26.7
10.14 $15-18$	559	326	154	79	3	11	1.9	13.9
$15 \cdot 18$	386	291	31	64	0	1	0	1.6
Total	1,749	686	756	307	15	32	2.0	10.4

** Nu history of measles before January 1970.
**Age group not included in survey.
Three children did not receive vaccine in accordance with accepted ACIP recommendations. One child, age 20 months,
received vaccine at 9 months of age. Two other children, age 6 and 7 , received vaccine between 8 and 9 months of age,
with MIG. Adjusting for these three cases would lower the attack rate for immunized children to 1.6 .

SALMONELLOSIS - Los Angeles, California

On Dec. 13-14, 1970, four related outbreaks of sal monellosis occurred among approximately 400 persons in Los Angeles County who attended parties catered by a single catering service. Of 207 persons contacted, 128 (62 percent) reported onset of symptoms, including diarrhea (89 percent), abdominal cramps (88 percent), nausea (77 percent), fever (70 percent), and vomiting (41 percent), 3 to 59 hours after the gatherings (mean 18 hours). Attack rates for the individual parties ranged from 34 to 82 percent (Table 4). No deaths were reported. Salmonella san-diego was recovered in stool cultures from 109 symptomatic and asymptomatic persons from each of the four parties. Food histories were not obtained.

Samples of six left-over food items from two of the parties were cultured; all yielded S. san-diego, including sliced ham, pimento meat loaf, minced ham, and sliced turkey from parties 1 and 2 as well as coleslaw from party 2. Similar food items were served at the two other parties, but no leftovers were available for culture.

Frozen 14-lb. turkey breasts prepared for the parties were reportedly thawed overnight and then roasted at $350^{\circ} \mathrm{F}$. for $31 / 2$ hours. After cooling for one-half hour at room temperature, the turkey was refrigerated at $50^{\circ} \mathrm{F}$. until the time of distribution to the parties on the following day. Although the cold cuts and ham were prepared outside the catering establishment, they were sliced by the caterer and
placed on platters in direct contact with turkey slices and then stored. Party 1, which experienced the highest attack rate, left the catered food at room temperature for 3 to 4 hours prior to serving. Undercooked rare inner parts of the turkey were noted by ill persons and inspectors.
(Reported by lchiro Kamei, M.D., Chief, G. A. Heidbreder, M.D., Health Officer, Robert Murray, Epidemiologist, and Betsy MacCracken, M.D., Epidemiologist, Acute Communicable Disease Control Division, and Ralph Tetreault, Chief Sanitarian, Food and Drug Section, Carl Lawrence, Ph.D., Director, Bureau of Laboratories, and 21 District Health Officers, Los Angeles County Health Department; and an EIS Officer.)

Editorial Comment

Roasting of turkey at the temperature reported by the caterer would probably destroy any contaminating salmonellae. However, the refrigeration temperature of $50^{\circ} \mathrm{F}$. would have been inadequate to prevent stored undercooked food from bacterial multiplication after preparation.

Of the 48 isolations of S. san-diego from nonhumans in the United States in 1968, the last year with currently available tabulation of isolates, 40 were from turkeys. The 48 isolations were reported from nine states in different regions of the United States. In 1967,51 of the $91 S$. sandiego isolations from nonhumans from 16 states were from turkeys.

Table 4
Symptoms and Mean Incubation Periods in Four Related Outbreaks of Salmonellosis Los Angeles, California

Party	Number Persons Interviewed	Attack Rate (Percent)	Mean Incubation Period (Hours)	Di arrhea (Percent)	Cramps (Percent)	Nausea (Percent)	Fever (Percent)	Vomiting (Percent)
1	63	82	15.6	94	94	72	88	38
2	32	72	16.5	96	92	65	74	39
3	74	34	18.7	84	80	84	60	36
4	38	74	22.3	86	89	93	50	57
Average		62	18	89	88	77	70	41

INTERNATIONAL NOTES

FOLLOW-UP INFLUENZA - United States and England and Wales

The peak of the influenza season appears passed both in the United States and in England and Wales, and although influenza activity has not stabilized below the epidemic threshold, a comparison of the respiratory mortality of the respective countries can be made. Whereas during the winter of 1968-69, the United States experienced an epidemic of major proportions due to A2/Hong Kong/68 influenza with a sharp peak in respiratory mortality, England and Wales noted only localized outbreaks with only modest irregular increases in respiratory mortality (MMWR, Vol. 19, No. 4). This situation completely reversed during the current influenza season, with England experiencing a sharp increase and the United States only a modest rise. Particularly striking about the English mortality figures was the abruptness with which the peak was reached as well as the equally abrupt decline to near baseline levels. Baseline expected levels were first exceeded during the
first week of 1970. By the fifth week of 1970, baseline levels had been achieved again. A modest increase has occurred during the past 2 weeks, but the increase has not exceeded the epidemic threshold (Figure 2).

This influenza season, the United States first noted significant excessive respiratory mortality during the first week of 1970 , and while it is still elevated significantly above the baseline, a downward trend has occurred during the past 2 weeks. Of the nine major geographic divisions, two (East South Central and South Atlantic) are currently elevated significantly above expected levels.
(Reported by Respiratory Diseases Unit, Viral Diseases Branch, and the Statistical Services Activity, Epidemiology Program, NCDC; and Dr. Anthony T. Roden, Principal Medical Officer, Epidemiology Division, Department of Health and Social Security, London.)

Figure 2
PNEUMONIA, INFLUENZA, AND BRONCHITIS DEATHS, ENGLAND AND WALES

PNEUMONIA AND INFLUENZA DEATHS, 122 UNITED STATES CITIES

TULAREMIA - King County, Washington

On Oct. 21, 1969, a 24-year-old man in Washington noted swelling and tenderness of the third finger of his right hand. He had cut this finger on October 16 when he was skinning a bobcat he had shot while deer hunting. The man subsequently had persistent high fever, unilateral epitrochlear and axillary lymphadenopathy, severe pharyngitis, and laryngitis. He saw his physician and was treated with penicillin without amelioration of symptoms. He was referred to another physician on October 27 and was started on a course of chloramphenicol. On October 29, he had a confluent rash with some urticaria. Two days later, his hemoglobin was 16 gram percent and his white blood cell count was 6,000 with 40 percent lymphocytes and 58 percent polymorphonuclear cells. By November 3, his rash, pruritis, and urticaria had disappeared; his temperature had decreased; the finger swelling had resolved; and his throat was less sore. He continued to complain of fatigue, but gradually his symptoms subsided, and when seen on Novem-
ber 7 , he was considerably better. By January 21, the patient was entirely asymptomatic and had returned to full activity.

A convalescent serum obtained on December 30 showed a titer of 1:2,560 against Franciscella tularensis antigen, as compared with a titer of $1: 40$ obtained from an acute serum specimen. The sera showed no titer rise against Proteus OX 19 , OX 2 , OX K , and Typhoid O and H antigens; both serum specimens had Brucella titers of 1:40.

This patient was the second confirmed case of tularemia acquired in Washington in 1969. He was the first patient in the state known to have acquired tularemia from skinning a bobcat and was the first case acquired in King County in recent years.
(Reported by Michael Mahoney, M.D., Auburn, Washington; Fred Christman, B.S., Susan Mills, B.S., and Joseph DiCaprio, M.D., Division of Laboratories, and Byron J. Francis, M.D., Chief, Division of Epidemiology, Washington State Department of Health; and an EIS Officer.)

FOLLOW-UP TULAREMIA OUTBREAK - Vermont

In the spring of 1968 , an epidemic of tularemia occurred in west central Vermont (MMWR, Vol. 17, Nos. 18, 21, and 28 and Vol. 18, No. 23). At that time 47 cases were linked to contact with muskrats, all shot or trapped from three streams in Addison County. Subsequent investigations documented a total of 72 cases associated with muskrats taken from these streams. Of these, 49 had onset in the spring of 1968, 16 in the spring of 1969 , and 7 could not be precisely dated. One additional patient had tularemia diagnosed in 1947 with a persistent positive titer in 1968. His illness was linked to contact with muskrats taken from a marsh 50 miles north of Addison County. This patient is the only person known to have acquired tularemia in Vermont prior to 1968 , and he is the only person known to have developed the disease from contact with animals taken anywhere but in Addison County.

Clinically, the cases varied greatly in severity. Of the 55 symptomatic patients, 89 percent had fever, 69 percent cutaneous lesions, and 65 percent lymphadenopathy; 22 (40 percent) had all three of these signs. Several patients required hospitalization, but no deaths occurred. Eleven patients (20 percent) had no symptoms referable to tularemia, and six others had symptoms compatible with other diseases, possibly not related to tularemia; however, these 17 patients had positive tube agglutination or tularemia antigen skin tests, or both.

All 72 patients had handled wet muskrat pelts or skinned muskrats taken from the three streams that flow into Lake Champlain. Persons who handled more than 50 animals had a significantly greater chance of acquiring the disease. Most of the cases occurred after the muskrat shooting sear son, April 1-10, the time when the greatest number of muskrats were killed.

Most of the 1968 patients lived near the implicated streams, but many of the 1969 patients were from further away.
(Reported by Donald Bicknell, M.D., Vergennes; Robert B. Aiken, M.D., Commissioner of Health, Linus Leavens, M.D., Director, and William Royster, Communicable Disease Control, Dymitry Pomar, D.V.M., Director, and Terence Macaig, Bureau of Laboratories, Vermont State Department of Health; and the Special Pathogens Section, Bacterial Diseases Branch, Epidemiology Program, and Bacterial $1 m$ munology Unit, Laboratory Division, NCDC.)

Editorial Comment

The fact that the patients with disease in 1969 resided further away from the implicated streams than did the par tients in 1968, presumable, may reflect increased immunits levels in the high risk local residents as well as awareness of the disease by them.

TULAREMIA - United States 1960-1968

For the 9 -year period 1960-1968*, a total of 2,594 cases of tularemia were reported in the United States. The total for each year was less than that of the previous year and was consistent with the steady decline in cases noted since 1939, the year of highest incidence after tularemia became a reportable disease in 1927 (Figure 3). A total of

2,291 cases or 18.5 cases per $1,000,000$ population were reported in 1939. The states reporting the largest number of cases for the years 1960-1968 were Arkansas (527), Illinois (208), Tennessee (201), and Missouri (193) (Figure 4). Five states, Maine, New Hampshire, Rhode Island, Connecticut, and Hawaii reported no cases during these years; however,

Figure 3
TULAREMIA INCIDENCE, UNITED STATES, 1927-1968

all states except Hawaii had previously reported the disease.

During the 8 -year period $1960-1967^{* *}, 23$ deaths attributable to tularemia were reported for a case fatality ratio 0.96 percent. This decline was consistent with the continued low mortality rate noted since 1946, the year streplomycin, the most effective drug for treating tularemia, became available. In the decade prior to 1946 , the case fatality ratio had been 9.5 percent; while in the decade beginning in 1949, the case fatality ratio was 1.2 percent.

Deaths for the years 1960-1967 were reported from 11 states. Four of these had more than one death: Arkansas (5), Tennessee (4), Oklahoma (4), and Texas (3). The mean age of the 23 patients who died was 55 years, with a range of from 20 to 83 years. Twenty of these patients were male and three were female. Also, 17 resided in rural areas in contrast to six who lived in towns or cities.

The monthly distribution of cases, 1960-1968, for States west of the Mississippi River and those east of the Mississippi, excluding the New England and Middle Atlantic states is presented in Figure 5. In the states west of the Mississippi River, more cases were reported during, the summer months; this is consistent with the fact that most tularemia there is transmitted primarily by ticks and other blood-sucking ectoparasites; exposure to these vectors is greatest during the summer months. In Arkansas, for example, in 1961-1965, 85 percent of the 262 cases for which the vector was known were associated with ticks. (1,2) The majority of states east of the Middle Atlantic states, showed a marked predominance of tularemia in the winter months, particularly in December. In this section of the

Figure 4
REPORTED CASES OF TULAREMIA BY STATE AND SEASONAL PREDOMINANCE, 1960.1968

Figure 5
REPORTED CASES OF TULAREMIA BY MONTH AND GEOGRAPHIC AREA UNITED STATES - 1960.1968

country the principal vector is the cottontail rabbit. In Illinois, Indiana, Georgia, and Tennessee, for example, where the December incidence was highest, the rabbithunting season lasts from mid-November to approximately mid-January. The relatively small number of tularemia cases in New England and the Middle Atlantic states occurred sporadically throughout each year for the years 1960-1968, with one major exception, the recent Vermont tularemia outbreak (MMWR, Vol. 17, Nos. 18, 21, and 28 and Vol. 18, No. 23).
(Reported by the Special Pathogens Section, Bacterial Diseases Branch, and the Statistical Services Activity, Epidemiology Program, NCDC.)
(Continued on page 100)

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
MARCH 7, 1970 AND MARCH 1, 1969 (9th WEEK)

AREA	$\begin{aligned} & \text { ASEPTIC } \\ & \text { MENIN- } \\ & \text { GITIS } \end{aligned}$	BRUCEL-LOSIS	DIPHTHERIA	ENCEPHALITIS			HEPATITIS			malaria	
				Primary including unsp. cases		Post Infectious	Serum	Infectious			
	1970	1970	1970	1970	1969	1970	1970	1970	1969	1970	1970
UNITED STATES......	25	5	15	21	11	8	112	1,232	993	80	603
NEW ENGLAND.	-	-	-	3	-	-	6	81	52	1	25
Maine................	-	-	-	-	-	-	-	3	11	-	
New Hampshire........	-	-	-	-	-	-	-	15	3	-	1
vermont...............	-	-	-	-	-	-	-	1	2	-	14
Massachusetts........	-	-	-	2	-	-	3	40	23	-	,
Rhode Island.	-	-	-	1	-	-	-	14	-	1	6
Connecticut..........	-	-	-	-	-	-	3	8	13	-	
MIDDLE ATLANTIC........	3	2	-	3	2	1	40	236	171	1	80
New York City........	1	-	-	2	-	-	19	73	77	1	21
New York, Up-State...	-	2	-	-	1	-	2	31	22	-	23
New Jersey.*..........	2	-	-	1	-	-	7	51	28	-	21
Pennsylvania.........	-	-	-	-	1	1	12	81	44	-	
EAST NORTH CENTRAL.....	2	-	2	9	3	2	17	202	166	3	33 8
Ohio. *................	-	-	-	3	3	2	4	59	45	-	3
Indiana................	-	-	-	-	-	-	-	25	16	3	4
Illinois.............	1	-	2	4	-	-	1	40	35	-	18
Michigan..............	1	-	-	2	-	-	12	70	55	-	-
Wisconsin.	-	-	-	-	-	-	-	8	15	-	
WEST NORTH CENTRAL.....	-	1	-	-	-	-	1	51	33	7	38
Minnesota.	-	-	-	-	-	-	1	10	11	-	6
Iowa.	-	1	-	-	-	-	-	7	4	-	3
Missouri..............	-	-	-	-	-	-	-	15	2	2	1
North Dakota..........	-	-	-	-	-	-	-	-	6	-	,
South Dakota.........	-	-	-	-	-	-	-	-	-	-	
Nebraska.	-	-	-	-	-	-	-	2	3	-	28
Kansas.................	-	-	-	-	-	-	-	17	7	5	
SOUTH ATLANTIC..........	5	-	-	2	3	1	8	149	87	19	121
Delaware..............	1	-	-	-	-	-	-	3	1	-	13
Maryland. *.	-	-	-	-	-	-	3	9	14	2	1
Dist. of Columbia....	-	-	-	-	-	-	-	-	-	-	9
Virginia..............	-	-	-	2	1	-	-	13	8	1	-
West Virginia........	-	-	-	-	1	-	-	8	3	-	
North Carolina.......	2	-	-	-	1	-	1	24	22	10	12
South Carolina.......	-	-	-	-	-	-	-	10	7	6	19
Georgia................	-	-	-	-	-	-	-	36	12	-	8
Florida...............	2	-	-	-	-	1	4	46	20	-	
EAST SOUTH CENTRAL.....	1	-	-	-	2	-	1	81	87	3	39
Kentucky.	1	_	-	-	1	_	-	37	34	2	34
Tennessee.............	-	-	-	-	-	-	1	24	31	-	5
Alabama...............	-	-	-	-	-	-	-	10	15	1	.
Mississipp1...........	-	-	-	-	1	-	-	10	7	-	
WEST SOUTH CENTRAL.....	2	1	6	-	-	2	-	73	89	9	120
Arkansas.............	-	-	-	-	-	-	-	4	11	-	5
Louisiana.............	-	-	3	-	-	2	-	8	20	3	18
Oklahoma. \#............	1	1	-	-	-	-	-	8	8	6	97
Texas.........	1	-	3	-	-	-	-	53	50	-	
MOUNTAIN.................	-	-	6	2	1	1	3	73	44	29	38
Montana..............	-	-	-	2	-	-	-	2	10	-	1
Idaho..................	-	-	-	-	-	1	-	-	4	-	,
Wyoming.	-	-	-	-	-	-	-	-	-	-	34
Colorado.	-	-	-	-	1	-	-	33	S	28	1
New Mexico.	-	-	-	-	-	-	3	12	6	1	2
Arizona.*.............	-	-	6	-	-	-	-	9	5	-	,
Utah.................	-	-	-	-	-	-	-	5	14	-	,
Nevada.	-	-	-	-	-	-	-	12	-	-	
PACIFIC......	12	1	1	2	-	1	36	286	264	8	104
Washington.	1	-	1	,	-	-	2	32	32	-	9
Oregon................	-	-	-	-	-	-	4	26	23	-	80
California...........	11	1	_	1	_	1	29	222	209	8	80
Alaska...............	-	-	-	-	-	-	-	3	-	-	17
Hawai1................	-	-	-	-	-	-	1	3	-	-	
Puerto Rico.*..........	---	-	---	-	-	---	---	--	29	---	
Virgin Islands..........	-	-			-						

*Delayed reports: Aseptic meningitis: Ohio delete 5 (1969)
Brucellosis: Okla. 1 (1969)
Encephalitis, primary: Ohio delete 10 (1969)
Hepatitis, serum: N.J. delete 1 , Md. 1 (1969), Ariz. 1
Hepatitis, infectious: N.J. delete 5, P.R. 19

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
MARCH 7, 1970 AND MARCH 1, 1969 (9th WEEK) - CONTINUED

AREA	MEASLES (Rubeola)			meningococcal infections, total			MUMPS		POLIOMYELITIS		
		Cumulative			Cumulative			$\begin{aligned} & \text { Cum. } \\ & 1970 \end{aligned}$	$\begin{aligned} & \text { Total } \\ & 1970 \end{aligned}$	Paralytic	
	1970	1970	1969	1970	1970	1969	1970			1970	$\begin{aligned} & \text { Cum. } \\ & 1970 \end{aligned}$
UNITED states.	1,293	8,967	3,740	68	6.15	723	2,704	22,579	-	-	1
Hen encland	28	169	166	3	29	21	190	3,042	-	-	-
Hasme....................		169	2	-	-	1	8	3,042	_	-	_
Hew Hampshire.........	2	9	37	-	3	-	3	175	-	-	-
Marmont.	1	1	-	2	3	-	11	149	-	-	-
Massachusetts	23	121	22	1	10	10	87	904	-	-	-
Connecticund....	1	12	7	-	3	3	40	310	-	-	-
onnecticut..	1	26	98	-	10	7	41	1,071	-	-	-
Male atlantic Hew York City......... New York, Un-State... Hew Jersey. Petinsylvania.	273	1,403	1,115	12	99	113	197	2,293	-	-	-
	23	198	. 677	4	26	18	70	667	-	-	-
	4	51	100	1	20	17	-	4	-	-	-
	127	647	206	5	28	51	8	682	-	-	-
	119	507	132	2	25	27	119	940	-	-	-
4St morth central Oh1o....................... Indiana.................. Hinois. Hichigan. Hisconsin	392	2,150	381	7	83	84	773	5,639	-	-	-
	125	2,676	42	4	42	27	108	5,632	-	-	-
	36	$\begin{array}{r}95 \\ \hline\end{array}$	79	2	8	12	111	515	_	_	_
	180	1,075	72	1	16	11	70	539	-	-	-
	28	152	51	-	15	28	181	1,320	-	-	-
	23	152	137	-	2	6	303	2,513	-	-	-
VETT NORTH CENTRAL. Minnesota. Lova..................... $\mathrm{Mr}_{80} \mathrm{Harin}^{*}$ North Dakota. South Dakota. Nebraska $\mathrm{Kans}_{\mathrm{as}}$.	35	1,073	108	3	12	37	220	1,513	-	-	-
	-	4	1	2	4	7	11	172	_	-	_
	3	24	51	-	3	4	134	940	-	-	-
	2	119	11	1	5	14	9	33	-	-	-
	2	45	2	-	-	-	29	140	-	-	-
	-	36	-	-	-	-	-	1	-	-	-
	26	801	43	-	-	2	22	205	-	-	-
${ }^{5} 0 \mathrm{O}_{2} \mathrm{H}$ ATLANTIC Delaware Haryland............... $\mathrm{Dist}_{\text {st, of }} \cdots \cdots \cdots \ldots$ Irginia............... Meat Virginia North Carolina South Carolina Corgia, ${ }^{1} \mathrm{loFida}$	2	44	-	-	-	10	15	16	-	-	-
	179	1,230	739	21	139	141	299	2,192	-	-	-
	14	96	6	-	2	3	2	49	-	-	-
	18	198	6	-	11	15	13	157	-	-	-
	44	238	-	-	1	2	19	59	-	-	-
	30	232	243	-	8	22	45	433	-	-	-
	4	56	67	-	1	5	82	746	-	-	-
	19	151	46	10	30	18	NN	NN	-	-	-
	28	59	46	-	6	16	48	190	-	-	-
	-	2	-	2	24	26	-	-	-	-	-
Etsr ${ }^{\text {a }}$.............	22	198	325	9	56	34	90	558	-	-	-
Kentuek central.....	14	118	28	4	38	32	137	1,581	-	-	-
Tennesky..............	3	68	8	1	12	8	50	'633	-	-	-
${ }^{4} 1 \mathrm{l}_{\text {abseree }}$	10	25	6	2	18	15	75	858	-	-	-
, ${ }^{18_{81} 1_{s_{81}} \ldots \ldots \ldots \ldots \ldots}$	-	12	-	1	5	7	12	81	-	-	-
Vest ${ }^{\text {crippl......... }}$	1	13	14	-	3	2	-	9	-	-	-
Ark South central	244										
Lounsas...........	244	1,991	940	7	102	96	251	2,158	-	-	1
ontana.............	$\overline{1}$	11	2	1	9	11	-	27	-	-	-
$\mathrm{rex}_{\text {dilama. }}$	-	61	101	-	8	8	1	704	-	-	-
\%00.	243	1,911	835	6	61	47	152	1,424	-	-	1
ontan.	55	366	72	-	6	20	125	995	-	-	-
	-	9	2	-	-	1	17	150	-	_	_
Hymi \cdot................	1	5	-	_	_	3	-	47	_	-	-
	-	-	-	-	-	-	-	10	-	-	-
"ev Mexi \ldots.	-	9	7	-	3	3	49	365	-	-	-
	5	62	30	-	-	4	35	200	-	-	-
${ }^{\text {tah }}$.	45	273	31	-	1	6	14	164	-	-	-
	2	4	1	-	2	1	10	59	-	-	-
c $\cdot \cdots \cdot$.	2	4	1	-	-	2	-	-	-	-	-
	73	467	191	11	97	179	512	3,164	-	-	-
reienongon............		35	10	4	14	10	208	1,310	-	-	
Calforn \cdot...........	36	70	30	-	8	6	21	+ 261	_	_	-
argka	36	340	146	7	74	157	214	1,272	-	-	-
haval1. $\cdot . \cdots \ldots . . .$.	-	1	4	-	-	-	16	112	-	-	
to p1	1	21	1	-	1	6	53	209	-	-	-
arymands........	-	420	96	--"	2	2	---		---	-**	
led report.		3		-	-	-	-	-	-	-	-

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
MARCH 7, 1970 AND MARCH 1, 1969 (9th WEEK) - CONTINUED

AREA	RUBELLA		tetanus		TULAREMIA		TYPHOID FEVER		$\begin{gathered} \text { TYPHUS FEVER } \\ \text { TICK-BORNE } \\ \text { (Rky. Mt. Spotted) } \end{gathered}$		RABIES IN ANIMALS	
	1970	$\begin{aligned} & \hline \text { Cum. } \\ & 1970 \end{aligned}$	1970	$\begin{aligned} & \hline \text { Cum. } \\ & 1970 \end{aligned}$	1970	$\begin{aligned} & \text { Cum. } \\ & 1970 \end{aligned}$	1970	$\begin{aligned} & \text { Cum. } \\ & 1970 \end{aligned}$	1970	$\begin{aligned} & \text { Cum. } \\ & 1970 \\ & \hline \end{aligned}$	1970	$\begin{aligned} & \text { Culiin } \\ & 1970 \\ & \hline \end{aligned}$
UNITED STATES.....	1,922	11,121	2	12	-	12	4	41	-	-	78	527
NEW ENGLAND............	65	445	-	1	-	-	-	2	-	-	7	27
Maine....	5	45	-	-	-	-	-	-	-	-	-	
New Hampshire.	3	49	-	-	-	-	-	-	-	-	$\overline{7}$	27
Vermont.	17	23	-	-	-	-	-	\cdots	-	-	7	-
Massachusetts......	30	159	-	1	-	-	-	1	-	-	-	-
Rhode Island........	1	8	-	-	-	-	-	-	-	-	-	-
Connecticut.........	9	161	-	-	-	-	-	1	-	-	-	
MIDDLE ATLANTIC.......	299	898	-	2	-	-	3	10	-	-	7	41
New York City.......	11	106	-	-	-	-	1	3	-	-	-	39
New York, Up-State.	17	86	-	-	-	-	1	4	-	-	6	
New Jersey.	180	336	-	1	-	-	1	1	-	-	-	2
Pennsylvania........	91	370	-	1	-	-	-	2	-	-	1	
	443	2,658	-	2	-	5	-	2	-	-	6	26
EAST NORIH CENTRAL....	60	2,622	_	2	-	2	-	1	_	_	1	1
Indiana............	129	533	-	1	-	3	-	-	-	-	1	6
Illinois...........	53	303	-	-	-	-	-	-	-	-	1	1
Michigan............	94	710	-	1	-	-	-	1	-	-	1	10
Wisconsin...........	107	790	-	-	-	-	-	-	-	-	2	
WEST NORTH CENTRAL....	108	1,104	-	-	-	2	-	-	-	-	6	69 15
Minnesota...........	5	52	-	-	-	-	-	-	-	_	1	15
Iowa..................	64	677	-	-	-	-	-	-	-	-	1	16
Missouri...........	21	84	-	-	-	2	-	-	-	-	-	8
North Dakota.	11	62	-	-	-	-	-	-	-	-	-	-
South Dakota....... .	-	1	-	-	-	-	-	-	-	-	-	2
Nebraska.	3	216	-	-	-	-	-	-	-	-	-	13
Kansas...............	4	12	-	-	-	-	-	-	-	-	4	
SOUTH ATLANTIC.........	181	1,306	1	5	-	1	-	10	-	-	22	145
Delaware..............	1	11	-	-	-	-	-	-	-	-	-	1
Maryland..............	32	70	-	-	-	-	-	3	-	-	-	,
Dist. of Columbia..	1	5	-	1	-	-	-	-	-	-	-	74
Virginia............	51	243	-	-	-	-	-	1	-	-	12	30
West Virginia.......	34	372	-	-	-	-	-	-	-	-	8	
North Carolina.....	2	3	-	-	-	-	-	1	-	-	-	-
South Carolina..... .	15	55	-	-	-	-	-	-	-	-	-	25
Georgia............	-	-	$\overline{-}$	1	-	-	-	4	-	-	-	15
Florida.............	45	547	1	3	-	1	-	1	-	-	2	
EAST SOUTH CENTRAL....	105	651	-	-	-	2	1	1	-	-	7	62 35
Kentucky...........	28	236	-	-	-	1	-	-	-	-	5	15
Tennessee..........	65	351	-	-	-	1	-	-	-	-	1	12
Alabama............	4	49	-	-	-	-	1	1	-	-	1	-
Mississippi........	8	15	-	-	-	-	-	-	-	-	-	
WEST SOUTH CENTRAL....	219	1,623	-	1	-	2	-	1	-	-	11	94 14
Arkansas............	-	-	_	-	-	1	-	1	-	-	1	26
Louisiana...........	-	3	-	1	-	-	-	-	-	-	1	8
Oklahoma............	46	436	-	-	-	1	-	-	-	-	1	46
Texas..............	173	1,184	-	-	-	-	-	-	-	-	8	
												5
mountarn.	91	458	-	-	-	-	-	4	-	-	-	,
Moatana............	14	94	-	-	-	-	-	1	-	-	-	-
Idaho...............	4	13	-	-	-	-	-	-	-	-	-	-
Wyoming.	1	30	-	-	-	-	-	-	-	-	-	-
Colorado...........	17	100	-	-	-	-	-	1	-	-	-	5
New Mexico..........	2	24	-	-	-	-	-	1	-	-	-	-
Arizona............	15	127	-	-	-	-	-	1	-	-	-	-
Utah...............	38	70	-	-	-	-	-	-	-	-	-	-
Nevada...............	-	-	-	-	-	-	-	-	-	-	-	
PACIFIC.....	411	1,978	1	1	-	-	-	11	-	-	12	58
Washington............	132	868	-	-	_	-	-	,	-	-	-	-
Oregon...............	39	226	1	1	-	-	-	-	-	-	-	58
California..........	229	763	-	-	-	-	-	10	-	-	12	-
Alaska..............	4	46	-	-	-	-	-	-	-	-	-	-
Hawaii..............	7	75	-	-	-	-	-	-	-	-	-	
Puerto Rico.\%..........	---	9	---	2	---	-	---	1	---	-	---	
Virgin Islands........	-	-	-	-	-	-	-	-	-	-		

Heek No.
TABLE IV. DEATHS IN 122 UNITED STATES CITIES FOR WEEK ENDED MARCH 7, 1970

TULAREMIA（Continued from page 95）

Editorial Comment：

The decline of tularemia morbidity in the United States since 1939 is probably due to urbanization and ecologic changes，with subsequent decreased human exposure to the vectors of tularemia．The decline in mortality probably re－ flects both the decline in morbidity and the availability of streptomycin after September 1946.

[^0]
EPIDEMIOLOGIC NOTES AND REPORTS EPIZOOTIC OF BOVINE CYSTICERCOSIS－California

On Feb．18，1969，three out of a shipment of 36 fattened cattle from one feedlot，slaughtered in a federally－inspected California packing plant，were found infected with live cysts of Taenia saginata．By May 2，a total of 1,612 cattle out of 3,408 slaughtered from this feedlot had been found infected by USDA inspectors．

An investigation was begun in March to determine the source of their infections．Employees of the feedlot were tested three times by stool examinations for infection with T ．saginata，and numerous feed and water samples were examined for the presence of Taenia eggs．All tests were negative．Feeding trials，using cattle from herds free of cysticercosis，were then done to determine if one of the feed components was contaminated，but no feed component could be incriminated．

During the investigation it was learned that this feed－ lot pumped water for its cattle from irrigation canals；it was the only one in this agricultural valley to do so．Early in January and February，heavy rains had produced the worst floods in 90 years in the valley，and homes in several migrant labor camps including their cesspools and pit privies had been inundated．The drainage from these areas had access to the canal from which the feedlot obtained its water．This was thought to be the source of the infections， although a stool survey in one of the labor camps was nega－ tive for T ．saginata infections．A recommendation was made that the feedlot obtain water for its cattle from wells rather than from irrigation canals．No new infections were re－ ported after May 2， 1969.
（Reported by Robert R．Brown，D．V．M．，Supervisory Veteri－ nary Medical Officer，Animal Health Division，Agricultural Research Service，United States Department of Agriculture， Fresno，California；and two EIS Officers．）

THE MOREIDITY AND MORTALITY WEEKLY REPORT WITH A CIRCULA THE MOREIDITY AND MORTALITY WEEKLY REPORT，WITH AMUNICAELE DISEASE CENTER，ATLANTA，GEORGIA

DIRECTOR，NATIONAL COMMUNICABLE DISEASE CENTER
DIRECTOR，EPIDEMIOLOGY PROGRAM
DAVID J．SENCER，M．©．
A．D．LANGMUIR，M．D．
EDITOR
MICHAEL B．GREGG，M．D． PRISCILLA B．HOLMAN
IN ADOITION TO THE ESTABLISHED PROCEDURES FOR REPORTING MOREIDITY AND MORTALITY，THE NATIONAL COMMUNICAELE OISEASE CENTER WELCOMES ACCOUNTS OF INTERESTING OUTEREAKS OR CASH INVESTIGATIONS WHICH ARE OF CURRENT INTEREST TO HEAROL OFFICIALS AND WHICH ARE DIRECTLY RELATED TO THE CONTROL OF COMMUNICAELE DISEASES．SUCH COMMUNICATIONS SHOULC BE ADDRESSED TO：

```
NATIONAL COMMUNICABLE DISEASE CENTER
                    ATTN: THE EDITOR
```

MORBIDITY AND MORTALITY WEEKLYREPORT ATLANTA，GEORGIA 30333
NOTE：THE DATA IN THIS REPORT ARE PROVISIONAL AND ARE BASED ON E DATA IN GHISARS TO THE NCDC BY THE INDIVIDUAL BASED ON WEEKLY TELEGRAMS TO THE NCDC BY THE INDIVIUDES STATE HEALTH DEPARTMENTS．THE REPORTING WEEK CONGTIUNAL AT CLOSE OF BUSINESS ON FRIDAY；COMPILEUBLIC ON THE SUCCEEVT ING FRIDAY

[^0]: ＊Final total for 1969 ，not yet available．
 ＊Last year for which mortality data are currently available．
 References：
 （1）Tularemia，1966．J．Arkansas Med．Soc．，63：78－79．
 （2）Francis，i．，1937．Sources of Infection and Seasonal Inci－ dence of Tularemia in Man．Pub Hlth Rep．，52：103－113．

